(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__g(X)) → G(activate(X))
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(F(x1, x2)) = | -I | + | 2A | · | x1 | + | 1A | · | x2 |
POL(ACTIVATE(x1)) = | 1A | + | 1A | · | x1 |
POL(n__f(x1, x2)) = | 5A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(activate(x1)) = | 4A | + | 0A | · | x1 |
POL(n__g(x1)) = | 0A | + | 0A | · | x1 |
POL(f(x1, x2)) = | 5A | + | 1A | · | x1 | + | 0A | · | x2 |
The following usable rules [FROCOS05] were oriented:
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__g(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(
x1,
x2) =
x2
g(
x1) =
g(
x1)
ACTIVATE(
x1) =
x1
n__f(
x1,
x2) =
x2
activate(
x1) =
x1
n__g(
x1) =
n__g(
x1)
f(
x1,
x2) =
x2
Recursive path order with status [RPO].
Quasi-Precedence:
[g1, ng1]
Status:
g1: [1]
ng1: [1]
The following usable rules [FROCOS05] were oriented:
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ACTIVATE(
n__f(
X1,
X2)) →
F(
activate(
X1),
X2) at position [0] we obtained the following new rules [LPAR04]:
ACTIVATE(n__f(n__f(x0, x1), y1)) → F(f(activate(x0), x1), y1)
ACTIVATE(n__f(n__g(x0), y1)) → F(g(activate(x0)), y1)
ACTIVATE(n__f(x0, y1)) → F(x0, y1)
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__f(n__f(x0, x1), y1)) → F(f(activate(x0), x1), y1)
ACTIVATE(n__f(n__g(x0), y1)) → F(g(activate(x0)), y1)
ACTIVATE(n__f(x0, y1)) → F(x0, y1)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ACTIVATE(
n__f(
n__g(
g(
X)),
y1)) evaluates to t =
ACTIVATE(
n__f(
n__g(
g(
X)),
activate(
y1)))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [y1 / activate(y1)]
- Semiunifier: [ ]
Rewriting sequenceACTIVATE(n__f(n__g(g(X)), y1)) →
F(
g(
activate(
g(
X))),
y1)
with rule
ACTIVATE(
n__f(
n__g(
x0),
y1')) →
F(
g(
activate(
x0)),
y1') at position [] and matcher [
x0 /
g(
X),
y1' /
y1]
F(g(activate(g(X))), y1) →
F(
g(
g(
X)),
y1)
with rule
activate(
X') →
X' at position [0,0] and matcher [
X' /
g(
X)]
F(g(g(X)), y1) →
F(
g(
X),
n__f(
n__g(
g(
X)),
activate(
y1)))
with rule
F(
g(
X'),
Y') →
F(
X',
n__f(
n__g(
X'),
activate(
Y'))) at position [] and matcher [
X' /
g(
X),
Y' /
y1]
F(g(X), n__f(n__g(g(X)), activate(y1))) →
ACTIVATE(
n__f(
n__g(
g(
X)),
activate(
y1)))
with rule
F(
g(
X),
Y) →
ACTIVATE(
Y)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(12) NO